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Abstract

Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Con-

ditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network-based

models (also known as graphical models) specifically designed to model spatially autocorrelated

data based on neighborhood relationships. We identify and discuss six different types of practical

ecological inference using CAR and SAR models, including: 1) model selection, 2) spatial regression,

3) estimation of autocorrelation, 4) estimation of other connectivity parameters, 5) spatial predic-

tion, and 6) spatial smoothing. We compare CAR and SAR models, showing their development and

connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR),

are described. CAR and SAR models depend on weight matrices, whose practical development

uses neighborhood definition and row-standardization. Weight matrices can also include ecological

covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in

harbor seals (Phoca vitulina) in southeastern Alaska from 463 polygons, some with missing data,

are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and

SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile

likelihood graphs illustrate inference for covariance parameters. The same data set is used for both

prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary

variances and correlations of a CAR model and demonstrate the effect of row-standardization. We

include several take-home messages for CAR and SAR models, including 1) choosing between CAR

and IAR models, 2) modeling ecological effects in the covariance matrix, 3) the appeal of spatial

smoothing, and 4) how to handle isolated neighbors. We highlight several reasons why ecologists

will want to make use of autoregressive models, both directly and in hierarchical models, and not

only in explicit spatial settings, but also for more general connectivity models.

Key Words: Conditional autoregressive, simultaneous autoregressive, CAR, SAR, IAR, geostatis-

tics, prediction, smoothing
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INTRODUCTION

Ecologists have long recognized that data exhibit spatial patterns (Watt, 1947). These patterns

were often expressed as spatial autocorrelation (Sokal and Oden, 1978), which is the tendency for

sites that are close together to have more similar values than sites that are farther from each

other. When spatial autocorrelation exists in data, ecologists often use spatial statistical models

because the assumption of independent errors is violated, making many conventional statistical

methods inappropriate (Cliff and Ord, 1981; Legendre, 1993). Areal data are a type of spatial

ecological data that involve polygons or area-referenced data with measured values from the

polygons (e.g., animal counts from game management areas). Often, ecological data collected in

nearby polygons are more similar than those farther apart due to similar habitat conditions,

biological processes such as migration or dispersal, and human impacts or management

interventions. For example, higher animal counts or occupancy often form spatial clusters on the

landscape (Thogmartin et al., 2004; Poley et al., 2014; Broms et al., 2014), plant measurements

from a set of plots may be spatially patterned (Agarwal et al., 2005; Bullock and Burkhart, 2005;

Huang et al., 2013), or global species diversity can exhibit geographic patterns when represented

as a coarse-scale grid (Tognelli and Kelt, 2004; Pedersen et al., 2014). For these types of spatial

data, spatial information can be encoded using neighborhoods, which leads to spatial

autoregressive models (Lichstein et al., 2002). The two most common spatial autoregressive

models are the conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models

(Haining, 1990; Cressie, 1993). CAR and SAR models form a large class of spatial statistical

models. Ecological data often exhibit spatial pattern, and while CAR and SAR models have been

used in ecology, they should be used more often. Our objective is to review CAR and SAR

models in a practical way, so that their potential may be more fully realized and used by
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ecologists, and we begin with an overview of their many uses.

Statistical Inference from CAR and SAR Models

We motivate the uses of spatial autoregressive models by considering typical (and not so typical,

but useful) objectives where CAR and SAR models have been used for statistical inference in

ecological studies: 1) model selection, 2) spatial regression, 3) estimation of autocorrelation, 4)

estimation of other connectivity parameters, 5) spatial prediction, and 6) spatial smoothing

(Table 1). There are many other interesting objectives in ecology, but these six are especially

relevant for spatial modeling with CAR and SAR. When residual spatial autocorrelation is found

based on, for example, Moran’s I (Moran, 1948; Sokal and Oden, 1978), none of the objectives in

Table 1 could be accomplished rigorously (in a probabalistic framework, using likelihoods for

model selection and parameter estimates with confidence intervals) without modeling spatial

autocorrelation. When data are collected on spatial areal (also called lattice, Cressie, 1993) units,

SAR and CAR models provide the most straighforward and well-studied approach for

accomplishing any of these objectives. We motivate each objective in turn and provide examples

of studies in which autoregressive models were used.

Model selection (objective 1) can reveal important relationships between the response (i.e.,

dependent variable) and predictor variables. There are a plethora of model comparison methods,

or multimodel inferences, based on Akaike Information Criteria (AIC, Akaike, 1973), Deviance

Information Criteria (DIC, Spiegelhalter et al., 2002), etc., that are generally available (e.g.,

Burnham and Anderson, 2002; Hooten and Hobbs, 2015). CAR and SAR covariance matrices

may be part of some or all models, and choosing a model, or comparing various CAR and SAR

models, may be an important goal of the investigation. For example, Cassemiro et al. (2007)

compared classical regression models assuming independence with SAR models while

2
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simultaneously selecting covariates using AIC when studying metabolism in amphibians. Qiu and

Turner (2015) used SAR models for random errors along with model averaging in a study of

landscape heterogeneity. Tognelli and Kelt (2004) compared CAR and SAR based on

autocorrelation in residuals, choosing SAR for an analysis of factors affecting mammalian species

richness in South America. In recent theoretical developments, Song and De Oliveira (2012)

provided details on comparing various CAR and SAR models using Bayes factors. Zhu et al.

(2010) extended the least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996)

using the least angle regression algorithm (LARS, Efron et al., 2004) to CAR and SAR models.

Regression analysis (objective 2) focuses on understanding relationships between predictor

and response variables. Gardner et al. (2010) used a spatial CAR regression model to show that

the probability of wolverine occupancy depended on predictors related to elevation and human

influence in the plots. Returning to an example above, Cassemiro et al. (2007) found that several

environmental predictors, including temperature, net primary productivity, annual actual

evapotransiration, etc., helped explain species richness for amphibians. Agarwal et al. (2005) used

a CAR model to study the effect of landscape variables, including road and population density, on

deforestation. Using a SAR model for the spread of invasive alien plant species, Dark (2004)

found relationships with elevation, road density, and native plant species richness. Beale et al.

(2010) provided a review of spatial regression methods, including CAR and SAR. In many of

these models, the autoregressive component was a latent random effect in a generalized linear

mixed model, (also viewed as a hierarchical model (Cressie et al., 2009) or a state-space model

(de Valpine and Hastings, 2002)), where the response variable was count (Clayton and Kaldor,

1987), binary (Gardner et al., 2010), or ordinal (Agarwal et al., 2005). Later, we provide more

discussion of CAR and SAR in hierarchical models.

Understanding the strength of autocorrelation in spatial data (objective 3) can reveal
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connectivity and interrelatedness of ecological systems. Gardner et al. (2010) used a Bayesian

CAR model to estimate the autocorrelation parameter ρ, with credible intervals to show

uncertainty. Lichstein et al. (2002) also provided estimates of the CAR autocorrelation parameter

for three different bird species, along with likelihood ratio tests against the null hypothesis that

they were zero. Similarly, but for SAR models, Bullock and Burkhart (2005) used likelihood ratio

tests to show significant estimates of several thousand tree species/location combinations with

both positive and negative autocorrelation parameters.

Objective 4, understanding direct covariate effects on autocorrelation, is almost never used

in ecological models, or in other disciplines. Typically, for regression, we model covariates

affecting the mean of the response variable. For example, for the ith response variable Yi,

E[Yi] = µi = β0 + β1x1,i + β2x2,i + . . ., where βp is the pth regression coefficient, and xp,i is the

pth covariate for the ith variable. Here, covariates are only part of the fixed effects and hence

affect autocorrelation indirectly through the residual error. Typically, autocorrelation is

controlled by the single parameter ρ, which scales the strength of autocorrelation. However, as for

the mean µi (and through the likelihood), we can model the effect of multiple measurements

(covariates) between pairs of response variables (locations for spatial data). For example, if ρi,j is

the correlation between site i and j, we can let ρi,j = θ0 + θ1x1,i,j + . . ., where x1,i,j is a covariate

defined between the ith and jth locations (e.g., a variable thought to impede or promote animal

dispersal or gene flow). This direct influence of covariates on autocorrelation may be of interest in

ecological studies concerned with connectivity (for a landscape-genetic example, see Hanks and

Hooten, 2013) and we provide an example of how graphical models (mathematical constructs of

points, or “nodes,” connected by lines, or “edges”) can be used to address this objective later.

Prediction at unsampled locations (objective 5) is a common goal in spatial analyses. An

example of prediction using CAR models is given in both Magoun et al. (2007) and Gardner et al.
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(2010), who modeled occupancy of wolverines from aerial surveys (also see Johnson et al., 2013a).

There were three types of observations: 1) plots that were surveyed with observed animals, 2)

plots that were surveyed with no animals, and 3) unsurveyed plots. Predictions for unsurveyed

plots provided probabilities of wolverine occurrence. Huang et al. (2013) predicted N2O in

pastures with missing samples using CAR models, and Thogmartin et al. (2004) used CAR

models to predict Cerulean Warblers abundance in the midwest US. Despite these examples, and

the fact that geostatistics and time series are largely focused on prediction (at unsampled

locations) and forecasting (at unsampled times in the future), respectively, there are few examples

of prediction using CAR and SAR models in ecology, or other disciplines.

To conceptualize smoothing (objective 6), imagine that disease rates in conservation

districts are generally low, say less than 10% based on thousands of samples, but spatially

patterned with areas of lower and higher rates. However, one conservation district has but a single

sample that is positive for the disease. It would be unrealistic to estimate the whole conservation

district to have a 100% disease rate based on that single sample. CAR and SAR models can be

used to create rates that smooth over observed data by using values from nearby districts to

provide better estimates. For examples, see Beguin et al. (2012) and Evans et al. (2016). Entire

books have been written on the subject (e.g., Elliot et al., 2000; Pfeiffer et al., 2008; Lawson,

2013b), and spatial smoothing of diseases form the introductions to CAR and SAR models in

many textbooks on spatial statistics (Cressie, 1993; Waller and Gotway, 2004; Schabenberger and

Gotway, 2005; Banerjee et al., 2014). Smoothing generally occurs when there is a complete census

of areal units (e.g., agriculatural production in plots, or disease counts from counties). In the

past, ecologists often sampled from plots, and rarely had a complete census, so they used this

objective infrequently. However, increasingly advanced instruments (e.g., LIDAR, Campbell and

Wynne, 2011) are yielding remotely sensed data with complete spatial coverage, allowing more
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opportunties for smoothing. In addition, smoothing over measurement error is attractive for

hierarchical (Cressie et al., 2009) and state-space (de Valpine and Hastings, 2002) models.

Our review shows that CAR and SAR models are used for many types of statistical

inference from ecological data, yet some highly cited ecological papers have incorrectly compared

CAR/SAR to geostatistical models, incorrectly formulated the CAR model, and have given

incorrect relationships between CAR and SAR models (details are given in Appendix S1). We

emphasize that good statistical practice with CAR and SAR models depends on more and better

information. When ecological data are collected in spatial areal units, CAR and SAR models are

often the most appropriate approach for accounting for spatial autocorrelation, and are thus

essential tools for making valid inference on spatial data. To understand them better, we first

compare CAR and SAR to geostatistical models.

Autoregressive Models and Geostatistics

A common framework for statistical inference in ecology is regression or, more generally, a

generalized linear model (GLM), in which variation in the response variable is modeled as a

function of predictor variables (or covariates). A key assumption in these models is that each

response variable is independent from all others, after accounting for the covariate effects. When

the response variables are collected in space, it is very common for the residuals resulting from a

regression or GLM analysis to show spatial autocorrelation. Such autocorrelation violates the

independence assumption, and can make standard results, such as confidence or credible intervals,

invalid (Cliff and Ord, 1981; Legendre, 1993).

Instead of assuming independence, spatial statistical models directly account for spatial

autocorrelation through modeling the covariance matrix Σ of the residuals as a function of the

locations where the response variable, contained in the vector y, were collected. For example,
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when the observations are point-referenced (i.e., each y was collected at a location with known

GPS coordinates), geostatistical methods are often used (e.g., Turner et al., 1991). In a

geostatistical model, the covariance of two observations is modeled directly as a function of the

distance between the spatial locations where the observations were collected. For example, under

the exponential covariance model (Chiles and Delfiner, 1999, p. 84), covariance decays

exponentially with distance dij between observations

Cov(yi, yj) = Σij = σ2e−dij/φ, (1)

which makes observations that occur close to each other in space highly correlated, while

observations very far from each other nearly independent. Extending a regression model to allow

for spatial autocorrelation (e.g., Ver Hoef et al., 2001) keeps inference on regression parameters

from being invalidated by residual autocorrelation.

Geostatistical models directly model the covariance between spatial locations, and have

been developed specifically for point-referenced data. However, a wide range of ecological studies

collect aggregate observations from areal regions such as quadrats or pre-specified spatial

polygons. In this setting, one could use a geostatistical model, such as the exponential covariance

model (1), but this requires specifying a point to represent each areal unit, for example the

centroid of each areal unit (e.g., Ver Hoef and Cressie, 1993). While this is possible, another class

of spatial covariance models have been developed specifically to take advantage of the

characteristics of areal data, the autoregressive spatial models. In these models, a network of

connections between neighboring areal units is specified, and spatial dependence is specified

through a model that conditions on observations at neighboring locations. This conditional

spatial dependence can be shown to define the inverse of a covariance matrix (also known as the
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precision matrix, the term that we will use henceforth). Inverting this precision matrix then

results in a spatial covariance matrix Σ defined by the network structure of the neighbor

relationships. We illustrate with a simple example next.

An Example of a Spatial Autoregressive Model

To introduce autoregressive models, and illustrate how the network structure of an autoregressive

model results in spatial autocorrelation, we consider a simple setup in which observations are

collected at nine locations arranged in a 3 × 3 grid (Fig. 1).

In a geostatistical model where the observations were obtained at a point-referenced

location, we could define spatial autocorrelation based on the distance between sites (Eq. 1). In

an autoregressive model, spatial autocorrelation is defined by neighborhood (network) structure.

In Fig. 1, we have defined neighborhood structure based on nearest neighbors in each cardinal

direction. Neighbors are shown by the vertical and horizontal lines, so site 1 has two neighbors,

labeled 2 and 4, etc. We can capture these neighborhood relationships in a matrix. For Fig. 1, let

W =



























0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0



























(2)

be the matrix that indicates neighbor relationships, where a one in the jth column for the ith row

indicates that site j is a neighbor of site i, otherwise the entry is zero. The rows and columns

correspond to the numbered sites in Fig. 1. Under a CAR model for spatial autocorrelation,

which we explore in more detail in the next Section, the spatial precision matrix Σ−1 is defined as

(I− ρW), where ρ is an autocorrelation parameter and I is a diagonal matrix of all ones. The

8

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



resulting spatial covariance matrix Σ, which describes spatial correlation based on the

neighborhood structure in W, is obtained by inverting the precision matrix

Σ = (I− ρW)−1 =



























1.10 0.26 0.06 0.26 0.12 0.04 0.06 0.04 0.02
0.26 1.16 0.26 0.12 0.29 0.12 0.04 0.07 0.04
0.06 0.26 1.10 0.04 0.12 0.26 0.02 0.04 0.06
0.26 0.12 0.04 1.16 0.29 0.07 0.26 0.12 0.04
0.12 0.29 0.12 0.29 1.24 0.29 0.12 0.29 0.12
0.04 0.12 0.26 0.07 0.29 1.16 0.04 0.12 0.26
0.06 0.04 0.02 0.26 0.12 0.04 1.10 0.26 0.06
0.04 0.07 0.04 0.12 0.29 0.12 0.26 1.16 0.26
0.02 0.04 0.06 0.04 0.12 0.26 0.06 0.26 1.10



























, (3)

where in this example, ρ = 0.2.

We use this simple example to illustrate that 1) geostatistical models are defined by actual

spatial distance, while CAR and SAR models are defined by neighborhoods, and 2) geostatistical

models specify the covariance matrix Σ directly, whereas CAR and SAR models specify the

precision matrix. We also note that it is not immediately obvious how the covariance matrix will

behave based on our neighborhood definitions (because of the nonlinear nature of a matrix

inverse). For example, the variances on the diagonal of Eq. 3 are not all equal. Notice the

covariances for site 1 (the off-diagonal elements in the first row of Σ), showing that site 1 is most

highly correlated with sites 2 and 4, but also nonzero correlation with non-neighbors. Wall (2004)

found some surprising and unusual behavior for CAR and SAR models. Our goal is to demystify

CAR and SAR models, and provide practical suggestions for use of these models in ecological

analyses.

CAR and SAR models are prevalent in the literature, and the six objectives listed above

(Table 1) show that these models are essential tools for the analysis of ecological data. Our goals

are as follows: 1) to explain how these models are obtained, 2) provide insight and intuition on

how they work, 3) to compare CAR and SAR models, and 4) provide practical guidelines for their
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use. Using harbor seal (Phoca vitulina) trends, we provide an example for further illustration of

the objectives given in Table 1. We then discuss important topics that have received little

attention so far. For example, there is little guidance in the literature on handling isolated

(unconnected) sites, or how to choose between a CAR model and a special case of the CAR

model, the intrinsic autoregressive model (IAR). We provide such guidance, and finish with five

take-home messages that deserve more attention.

SPATIAL AUTOREGRESSIVE MODELS

Spatial relationships for CAR and SAR models are based on a graphical model, or a network,

where, using terminology from graphical models (e.g., Lauritzen, 1996; Whittaker, 2009), sites are

called nodes (circles in Fig. 1) and connections are called edges (lines in Fig. 1). Edges can be

defined in many ways, but a common approach is to create an edge between adjoining units in

geographic space or any network space. Statistical models based on graphical spatial structure are

sometimes known as Gaussian Markov random fields (e.g., Rue and Held, 2005). For notation, let

Yi be a random variable used to model observations at the ith node, where i = 1, 2, . . . , N , and all

Yi are contained in the vector y. Then consider the spatial regression framework,

y = Xβ + z+ ε, (4)

where the goal is to model a first-order mean structure that includes covariates (i.e., predictor

variables, X, measured at the nodes) with regression coefficients β, as well as a latent spatial

random error z, where z ∼ N(0,Σ), and independent error ε, where ε ∼ N(0, σ2
εI). Note that z is

not directly measured, and instead must be inferred using a statistical model. The spatial

regression framework becomes a spatial autoregressive model when the covariance matrix, Σ, for
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z, takes one of two main forms: 1) the SAR model,

Σ ≡ σ2
Z((I−B)(I−B′))−1, (5)

or, 2) the CAR model,

Σ ≡ σ2
Z(I−C)−1M. (6)

Here, spatial dependence between Zi and Zj is modeled by B = {bij} and C = {cij} for the SAR

and CAR models, respectively, where bii = 0 and cii = 0 and M = {mij} is a diagonal matrix (all

off-diagonal elements are 0), where mii is proportional to the conditional variance of Zi given all

of its neighbors. The spatial dependence matrices are often developed as B = ρW and C = ρW,

where W is a weights matrix and ρ controls the strength of dependence. For the example in

Eq. 3, we used a CAR model (Eq. 6) with C = ρW, where W was given in Eq. 2, and σ2
Z = 1,

M = I, and ρ = 0.2.

To help understand autoregressive models, consider partial correlation (e.g., Snedecor and

Cochran, 1980, pg. 361), which is the idea of correlation between two variables after

“controlling,” or holding fixed, the values for all other variables. If Σ−1 = Ω = {ωi,j}, then the

partial correlation between random variables Zi and Zj is −ωij/
√
ωiiωjj (Lauritzen, 1996, pg.

120), which, for normally distributed data, is equivalent to conditional dependence. For the

example in Fig. 1 and Eq. 2, Σ−1 = (I− 0.2W) and so the partial correlation between sites 1 and

2 is 0.2. Thus, we can see that the CAR model, in particular, allows the modeler to directly

specify partial correlations (or covariances), rather than (auto)correlation directly. That is, we are

in control of specifying the off-diagonal matrix values of W in Σ−1 = σ2
ZM

−1(I− ρW), and

therefore we are specifying the partial correlations. The SAR model case is similar, though

instead of directly specifying partial correlations, as is done with (I−C) in the CAR model, the
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SAR specification involves modeling a square root, (I−B), of the precision matrix. Contrast this

with geostatistics, where we are in control of specifying Σ, and therefore we directly specify the

(auto)correlations. In both cases, we generally use a functional parameterization, rather than

specify every matrix entry individually. For CAR and SAR models, the specification is often

based on neighbors (e.g., partial correlation exists between neighbors that share a boundary,

conditional on all other sites), and for geostatistics, the specification is based on distance (e.g.,

correlation depends on an exponential decay with distance). For CAR models, if cij = 0, then

sites i and j are partially uncorrelated; otherwise there is partial dependence. Note that diagonal

elements bii and cii are always zero. For z (a SAR or CAR random variable) to have a proper

statistical distribution, ρ must lie in a range of values that allows (I−B) to have an inverse and

(I−C) to have positive eigenvalues; that is, ρ cannot be chosen arbitrarily, and its range depends

on the weights in W (later, we discuss elements of W other than 0 and 1).

The statistical similarities among the SAR and CAR models are obvious; they both rely on

a latent Gaussian specification, a weights matrix, and a correlation parameter. In that sense, both

the SAR and CAR models can be implemented similarly. However, there are key differences

between SAR and CAR models that are fundamentally important because they impact inference

gained from these models. As such, we describe each model in more detail and provide practical

advice.

SAR Models

One approach for building the SAR model begins with the usual regression formulation described

in Eq. 4. Instead of modeling the correlation of z directly, an explicit autocorrelation structure is

imposed,

z = Bz+ ν, (7)
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where the spatial dependence matrix, B, is relating z to itself, and ν ∼ N(0, σ2
ZI). These models

are generally attributed to Whittle (1954). Solving for z, note that (I−B)−1 must exist (Cressie,

1993; Waller and Gotway, 2004), and then z has zero mean and covariance matrix

Σ = σ2
Z((I−B)(I−B′))−1. The spatial dependence in the SAR model comes from the matrix B

that causes the simultaneous autoregression of each random variable on its neighbors. When

constructing B = ρW, the weights matrix W does not have to be symmetric because it does not

appear directly in the inverse of the covariance matrix (i.e., precision matrix). For the example in

Eq. 2, the covariance matrix is

Σ = ((I− ρW)(I− ρW′))−1 =



























1.37 0.67 0.23 0.67 0.46 0.20 0.23 0.20 0.09
0.67 1.60 0.67 0.46 0.87 0.46 0.20 0.33 0.20
0.23 0.67 1.37 0.20 0.46 0.67 0.09 0.20 0.23
0.67 0.46 0.20 1.60 0.87 0.33 0.67 0.46 0.20
0.46 0.87 0.46 0.87 1.93 0.87 0.46 0.87 0.46
0.20 0.46 0.67 0.33 0.87 1.60 0.20 0.46 0.67
0.23 0.20 0.09 0.67 0.46 0.20 1.37 0.67 0.23
0.20 0.33 0.20 0.46 0.87 0.46 0.67 1.60 0.67
0.09 0.20 0.23 0.20 0.46 0.67 0.23 0.67 1.37



























, (8)

using ρ = 2. Eq. 8 can be compared to Eq. 3. The constraints to allow (I−B)(I−B′), when

B = ρW, to be a proper precision matrix are best explored through the eigenvectors and

eigenvalues of W. If λ[1] < 0 is the smallest eigenvalue, and λ[N ] > 0 is the largest eigenvalue of

W, then 1/λ[1] < ρ < 1/λ[N ] is sufficient for an inverse of (I−B) to exist. This is a sufficient, but

not a necessary, condition. It is possible to specify a SAR model that does not satisfy this

condition, but this is almost never done in practice, and we do not explore it further here. For

Eq. 2, the minimum eigenvalue is -2.828 and the maximum is 2.828, with no eigenvalues equal to

zero, so Eq. 2 can be made into a proper covariance matrix and ρ must be between ± 0.354.

The model created by Eq. 4 and Eq. 7 has been termed the “spatial error” model version of

SAR models. An alternative is to simultaneously autoregress the response variable and the errors,
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y = ρWy +Xβ + ε (Anselin, 1988), yielding the “SAR lag model” (Kissling and Carl, 2008),

y = (I− ρW)−1Xβ + (I− ρW)−1ε, (9)

which allows the matrix W to smooth covariates in X as well as creating autocorrelation in the

error for y (e.g., Hooten et al., 2013). A final version is to simultaneously autoregress both

response and a separate random effect ν (e.g., “SAR mixed model” Kissling and Carl, 2008),

y = ρWy +Xβ +WXν + ε. (10)

CAR Models

The term “conditional” in the CAR model is used because each element of the random process is

specified conditionally on the values of the neighboring nodes. The CAR model is typically

specified as

Zi|z−i ∼ N





∑

∀cij 6=0

cijzj ,mii



 , (11)

where z−i is the vector of all Zj where j 6= i, C is the spatial dependence matrix with cij as its

i, jth element, cii = 0, and M is zero except for diagonal elements mii. Note that mii may depend

on the values in the ith row of C. In this parameterization, the conditional mean of each Zi is

weighted by values at neighboring nodes. The variance component, mii, is also conditional on the

neighboring nodes and is thus nonstationary, varying with node i. In contrast to SAR models, it

is not obvious that Eq. 11 can lead to a full joint distribution for all random variables; however,

this was demonstrated by Besag (1974) using Brook’s lemma (Brook, 1964) and the

Hammersley-Clifford theorem (Hammersley and Clifford, 1971; Clifford, 1990). For z to have a

proper statistical distribution, (I−C) must have positive eigenvalues and Σ = σ2
n(I−C)−1M
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must be symmetric, which requires that

cij
mii

=
cji
mjj

, ∀ i, j. (12)

For CAR models, when C = ρW, W and ρ can be constrained in exactly the same way as for

SAR models; if 1/λ[1] < ρ < 1/λ[N ] for λ[1] the smallest, and λ[N ] the largest eigenvalues of W,

then I− ρW will have positive eigenvalues.

A special case of the CAR model, called the intrinsic autoregressive model (IAR) (Besag

and Kooperberg, 1995), occurs when Eq. 11 is parameterized as

Zi ∼ N





∑

j∈Ni

zj/|Ni|, τ2/|Ni|



 , (13)

where Ni are all of the locations defined as neighbors of the ith location, |Ni| is the number of

neighbors of the ith location, and τ2 is a constant variance parameter. In Eq. 13, the conditional

mean of each random variable is the average of its neighbors, and the variance is proportional to

the inverse of the number of neighbors. Next, we discuss the creation of weights based on

averages of neighboring values.

Row-standardization

We begin a discussion of the weights matrix, W, which applies to both SAR and CAR models.

Consider the simplest case, where a one in W indicates a connection (an edge) between sites i

and j and a zero indicates no such connection, as in Eq. 2. For site i, let us suppose that there

are |Ni| neighbors, so there are |Ni| ones in the ith row of W. In terms of constructing random

variables, this implies that Zi is the sum of its neighbors, and summing increases variance.

Generally, if left uncorrected, it will not be possible to obtain a covariance matrix in this case. As
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an analog, consider the first-order autoregressive (AR1) model from time series, where

Zi+1 = φZi + νi, and νi is an independent random variable. It is well-known that φ = 1 is a

random walk, and anything with |φ| > 1 will not have a variance because the series “explodes”

(e.g., Hamilton, 1994, pg. 53). There is a similar phenomenon for SAR and CAR models. In our

simple example, for the construction ρW, the value ρ|Ni| effectively acts like φ, and both should

be less than 1 to yield a proper statistical model. For example, consider the case where all

locations are on an evenly-spaced rectangular grid of infinite size where each node is connected to

4 neighbors, called a rook’s neighborhood; one each up, down, left, and right (as in Fig. 1). It is

well-known that spatial autoregressive models for this example must have |ρ| < 1/4 (Haining,

1990, pg. 82) (compare this to the finite grid in Fig. 1, which had |ρ| < 0.354). More generally,

|ρ| < 1/n if all sites have exactly n neighbors, |Ni| = n for all sites, to keep variance under

control. This leads to the idea of row-standardization.

If we divide each row in W by wi,+ ≡ ∑

j wij , then, again thinking in terms of constructing

random variables, each Zi is the average of its neighbors, which decreases variance. This is similar

to what is expressed in Eq. 13. Row-standardization of Eq. 2 yields

W+ =



























0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
0.33 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00
0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00
0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00
0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.33
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00
0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.33
0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00



























, (14)

which is an asymmetric matrix. For the CAR models, if W+ is an asymmetric matrix with each

row in W divided by wi,+, then mi,i = τ2/wi,+ (the ith diagonal element of M) satisfies Eq. 12.

Note that an additional variance parameter for mi,i will not be identifiable from σ2
Z in Eq. 6, so
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the row-standardized CAR model can be written equivalently as,

Σ = σ2
Z(I− ρW+)

−1M+ = σ2
Z(diag(W1)− ρW)−1, (15)

where 1 is a vector of all ones and diag(v) creates a matrix of all zeros except the vector v is on

the diagonal. For both CAR and SAR models, regardless of the number of neighbors, when using

row standardization, it is sufficient for |ρ| < 1, which is very convenient. Row standardization

simplifies the bounds of ρ and makes optimization easier to implement.

Moreover, consider again the case of an evenly-spaced rectangular grid of points, but this

time of finite size, again using a rook’s neighborhood. Using row standardization, points in the

interior of the rectangle are averaged over 4 neighbors, and they will have smaller variance than

those at the perimeter, averaged over 3 neighbors, and the highest variance will be locations in

the corners, averaged over 2 neighbors. Hence, in general, variance increases toward the

perimeter. Without row standardization, even when ρ controls overall variance, locations in the

middle, summed over more neighbors, have higher variance than those at the perimeter. Using

the example in Eq. 2,

Σ = (I− ρW+)
−1M+ =



























0.72 0.27 0.15 0.27 0.15 0.10 0.15 0.10 0.08
0.27 0.53 0.27 0.15 0.19 0.15 0.10 0.10 0.10
0.15 0.27 0.72 0.10 0.15 0.27 0.08 0.10 0.15
0.27 0.15 0.10 0.53 0.19 0.10 0.27 0.15 0.10
0.15 0.19 0.15 0.19 0.40 0.19 0.15 0.19 0.15
0.10 0.15 0.27 0.10 0.19 0.53 0.10 0.15 0.27
0.15 0.10 0.08 0.27 0.15 0.10 0.72 0.27 0.15
0.10 0.10 0.10 0.15 0.19 0.15 0.27 0.53 0.27
0.08 0.10 0.15 0.10 0.15 0.27 0.15 0.27 0.72



























,

with ρ = 0.8. The variances are on the diagonal, and these should be compared to Eq. 3. For an

error process in Eq. 4, higher variance near the perimeter makes more sense (as in many kriging

error maps), and, with a more natural and consistent range of values for ρ, row-standardization is
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beneficial.

Using row-standardization, and setting ρ = 1 in Eq. 11 leads to the IAR model in Eq. 13.

In our AR1 analogy, this is equivalent to φ = 1. In this case, Σ−1 is singular (i.e., does not have

an inverse), and Σ does not exist. It can be verified that Eq. 14 has a zero eigenvalue. While this

may seem undesirable, random walks and Brownian motion are stochastic processes without

covariance matrices (Codling et al., 2008). Considering how they are constructed, it helps to

think of the variances and covariances being defined on the increments; the differences between

adjacent variables. For these increments, the variances and covariances are well-defined. The IAR

distribution is improper, however it is similarly well-defined on spatial increments or contrasts. To

make the IAR proper, an additional constraint can be included,
∑

i Zi = 0. In essence, this

constraint allows all of the random effects to vary except one, which is subsequently used to

ensure that the values sum to zero as a whole. Geometrically, the sum-to-zero constraint can be

thought of as anchoring the process near zero for the purposes of random errors in a model. With

such a constraint, the IAR model is appealing as an error process in Eq. 4, forming a flexible

surface where there is no autocorrelation parameter ρ to estimate. The IAR model is called a

first-order intrinsic Gaussian Markov random field (Rue and Held, 2005, p. 93); higher orders are

possible but we do not discuss them here.

The Choice of Spatial Neighborhood Structure

There is little guidance in the literature on how to choose the neighborhood structure in

autoregressive models. One reason for this is that there is rarely a clear scientific understanding

of the mechanism behind spatial autocorrelation; rather, in most ecological modeling, our

scientific understanding of the system is used to model the mean structure, and modeling spatial

autocorrelation is a secondary consideration. The formulation in Eq. 4 suggests that the spatial
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random effect z can be thought of as a missing covariate that is spatially smooth, but there are

other possibilities as well. Hanks (2017) shows that the long-time limiting distribution of a

spatio-temporal random walk can result in a spatial random effect with SAR covariance,

indicating that SAR models can be seen as the covariance that results when the spatio-temporal

process being studied could be approximated by a random walk. This is an example of a SAR

model arising from a mechanism that may match a scientific question.

In the absence of a scientific motivation for spatial autocorrelation, one way to view

autoregressive models is as a modeling choice required to relax the assumption of independence of

y in Eq. 4, conditional on X and z, when it is not true. In a regression analysis, one might

consider multiple transformations of a response variable to satisfy the assumption of normality of

residuals. These transformations are not, in general, motivated by scientific understanding, but

rather by modeling expediency. Similarly, in a spatial analysis, one might consider multiple

autoregressive models, such as SAR and CAR models with different neighborhood structures. A

final model could be chosen based on AIC, DIC, or other similar criteria. In this situation, there is

little to be gained by trying to interpret the CAR or SAR model that best fits the data. Rather,

the researcher should focus interpretation on mean effects (objective 2) or prediction (objective 5),

and recognize that choosing a good neighborhood structure can improve both of these objectives.

The neighborhood structure of a CAR or SAR model depends on the connected nodes in

the network; these are almost always defined as the areal units on which one has observations.

This choice can have unintended consequences, as it implies that the process being studied only

exists on the specified areal units. This would be appropriate, for example, when one is modeling

recruitment of a species with a known geographic extent, and when the data collection has

encompassed the entire range of the species. As noted above, autoregressive models that use

row-standardization tend to have higher marginal variance at the perimeter of the network – this
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corresponds with the assumption that we are often less certain about the state of a system at its

boundaries than we are in more central spatial locations.

This assumption makes little sense when the system being studied is known to extend

beyond the spatial range of the study. In this case, there is no obvious reason to assume that

higher variance would occur at the perimeter of the study region. Instead, it would be more

appropriate to extend the range of the spatial random effect by creating a buffer region of areal

units on the boundary of the study region (e.g., Lindgren et al., 2011). While these buffer areal

units would not have observations associated with them, they would stabilize the marginal

variance of the spatial random effect, and would be appropriate whenever the process under study

is known to extend beyond the spatial domain of the data.

More Weighting – Accounting for Functional and Structural Connectivity

So far, we have reviewed standard spatial autoregressive models. Now, we want to consider their

more general formulation as graphical, or network models. In general, the autoregressive

component is an “error” process, and not often of primary interest (compared to prediction or

estimating fixed effects parameters, β). However, for ecological networks, there is a great deal of

interest in studying spatial connectivity, or equivalently spatial autocorrelation. We discuss other

weighting schemes for autoregressive models that have been very rarely, or never, used, but would

provide valid autocorrelation models for studying connectivity in ecology. In particular, although

the decomposition is not unique, we introduce weighting schemes for the W matrix that can

separate and clarify structural and functional components in network connectivity. By structural,

we mean correlation that is determined by physical proximity, such as geographic neighborhoods,

a distance measure, etc. By functional, we mean correlation that is affected by dispersal,

landscape characteristics, and other covariates of interest, which we illustrate next.
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Consider a spatial network of nodes and edges, with the response variable measured at

nodes, putting us in the setting of SAR and CAR models. Let eij be a characteristic of an edge

between the ith and jth nodes. The structural aspects can be accommodated in the neighborhood

structure – the binary representation of connectivity contains the idea of neighborhood structure.

Then edge weights, wij , between the ith and jth nodes could combine functional and structural

connectivity if they are modeled as,

wij =



















f(eij ,θ), j ∈ Ni,

0, j /∈ Ni,

(16)

where θ is a p-vector of parameters. To clarify, consider the case where xi is a vector of p habitat

characteristics of the ith node, ei,j = (xi + xj)/2, and f(eij ,θ) = exp(e′ijθ) (Hanks and Hooten,

2013). This allows a model of the effect that habitat characteristics at the nodes has on

connectivity. If θh < 0, then an increase in the hth habitat characteristic results in a smaller edge

weight and greater resistance to network connectivity. However, if θh > 0, then an increase in the

hth habitat characteristic results in a larger edge weight and less resistance to network

connectivity. In this example, the mean of the habitat characteristics found at the two nodes,

(xi +xj)/2, was used, but any other function of the two values could also be used (e.g., difference)

if it makes ecological sense. Alternatively, f(eij ,θ) could be something that is directly measured

on edges, such as a sum of pixel weights in a shortest path between two nodes from a habitat map.

For a matrix representation of Eq. 16, let F(θ) be a matrix of functional relationships for all

edges, let B be a binary matrix indicating neighborhood structure, and W = F(θ)⊙B, where ⊙

is the Hadamard (direct, or element by element) product. Then F(θ)⊙B allows a decomposition

for exploring structural and functional changes in connectivity by manipulating each separately.
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Of course, this must respect the restrictions described above for SAR and CAR models, and the

parameters need to be estimated, which we discuss in the section on fitting methods.

Comparing CAR to SAR with Practical Guidelines

With a better understanding of SAR and CAR models, we now compare them more closely and

make practical recommendations for their use; see also Wall (2004). First, we generally do not

recommend versions of the SAR model given by Eq. 9 and Eq. 10. It is difficult to understand

how smoothing/lagging covariates and extra random effects contribute to model performance, nor

to our understanding, and these models performed poorly in ecological tests (Dormann et al.,

2007; Kissling and Carl, 2008). Henceforth, we only discuss the error model defined by Eq. 7.

A SAR model can be written as a CAR model and vice versa, although almost all published

accounts on their relationships are incomplete (Ver Hoef et al., 2017). Cressie (1993, pg. 408)

demonstrated how a SAR model with four neighbors (rook’s neighbor) results in a CAR model

that involves all eight neighbors (queen’s neighbor) plus rook’s move to the second neighbors. It

is evident from Eq. 5 that specifying first-order neighbors in B will result in non-zero partial

correlations between second-order neighbors because of the product (I−B)(I−B)′ in the

precision matrix. Hence, SAR models have a reputation as being less “local” (averaging over more

neighbors, so causing more smoothing) than the CAR models. In fact, using the same

construction ρW for both SAR and CAR models, Wall (2004) showed that correlation (in Σ, not

partial correlation) increases more rapidly with ρ in SAR models than CAR models, which is also

apparent when comparing Eq. 3 to Eq. 8.

Regarding restrictions on ρ, Wall (2004) also showed strange behavior for negative values of

ρ. In geostatistics, there are very few models that allow negative spatial autocorrelation, and,

when they do, it cannot be strong. Thus, in most situations, ρ may be constrained to be positive.
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The fact that W in SAR models is not required to be symmetric may seem to be an advantage

over CAR models. However, we point out that this is illusory from a modeling standpoint,

although it may help conceptually in formulating the models. For an analogy, again consider the

AR1 model from time series. The model is specified as Zi+1 = φZi + νi, so it seems like there is

dependence only on previous times. However, the correlation matrix is symmetric, and

corr(Zi, Zi+t) = corr(Zi, Zi−t) = φt. Note also that this shows that specifying partial correlations

as zero (or conditional independence), does not mean that marginal correlation is zero (i.e.,

corr(Zi, Zi+t) 6= 0 for all t lags). The same is true for CAR and SAR models. In fact, the

situation is less clear than for the AR1 models, where corr(Zi, Zi+t) = φt regardless of i. For CAR

and SAR models, two sites that have the same “distance” from each other will have different

correlation, depending on whether they are near the center of the spatial network, or near the

perimeter; that is, correlation is nonstationary, just like the variance as described in the Section

on row-standardization.

CAR and SAR in Hierarchical Models

We now focus on the use of CAR and SAR spatial models within a hierarchical model. To discuss

these models more specifically and concretely, in the example and following discussion, consider

the following hierarchical structure that forms a general framework for all that follows,

y ∼ [y|g(µ), ξ],

µ ≡ Xβ + z+ ε,

z ∼ [z|Σ] ≡ N(0,Σ),

Σ−1 ≡ F(N,D, ρ,θ, . . .),

ε ∼ [ε|σ2] ≡ N(0, σ2I),

(17)
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where [·] denotes a generic statistical distribution (Gelfand and Smith, 1990), with the variable on

the left of the bar and conditional variables or parameters on the right of the bar. Here, let y

contain random variables for the potentially observable data, which could be further partitioned

into y = (y′
o,y

′
u)

′, where yo are observed and yu are unobserved. Then [y|g(µ), ξ] is typically the

data model, with a distribution such as Normal (continuous ecological data, such as plant

biomass), Poisson (ecological count data, such as animal abundance), or Bernoulli (ecological

binary data, such as occupancy), which depends on a mean µ with link function g, and other

parameters ξ. The mean µ has the typical spatial-linear mixed-model form, with design matrix X

(containing covariates, or explanatory variables), regression parameters β, spatially

autocorrelated errors z, and independent errors ε. We let the random effects, z, be a zero-mean

multivariate-normal distribution with covariance matrix Σ. In a geostatistical spatial-linear

model, we would model Σ directly with covariance functions based on distance like the

exponential, spherical, and Matern (Chiles and Delfiner, 1999). The variance σ2, of the

independent component var(ε) = σ2I, is called the nugget effect. However, in CAR and SAR

models, and as described above, we model the precision matrix, Σ−1. We denote this as a matrix

function, F, that depends on other information (e.g., a neighborhood matrix N = B or C, a

distance matrix D, and perhaps others). We isolate the parameter ρ that controls the strength of

autocorrelation. Note, however, there could be other parameters, θ, that form the functional

relationships among N,D, . . ., and Σ−1. In a Bayesian analysis, we could add further priors, but

here we give just the essential model components that provide most inferences for ecological data.

The model component to be estimated or predicted from Eq. 17 is identified in Table 1. Note

that a joint distribution for all random quantities can be written as [y|g(µ),ν][z|Σ][ε|σ2], but the

only observable data come from y. The term likelihood is used when the joint distribution is

considered a function of all unknowns, given the observed data, which we denote L(·|y), and this
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often forms the basis for fitting models (discussed next) and model comparison (Table 1).

Fitting Methods for Autoregressive Models

Maximum likelihood estimation is one of the most popular estimation methods for spatial models

(Cressie, 1993), but it can be computationally expensive. Earlier, when computers were less

powerful, methods were devised to trade efficiency (on bias and consistency) for speed, such as

pseudolikelihood (Besag, 1975) and coding (Besag, 1974) for CAR models, among others (Cressie,

1993). Both CAR and SAR models are well-suited for maximum likelihood estimation (Banerjee

et al., 2014). For spatial models, the main computational burden in geostatistical models is

inversion of the covariance matrix; for CAR and SAR models, the inverse of the covariance matrix

is what we actually model, simplifying computations (Paciorek, 2013). Thus, only the

determinant of the covariance matrix needs computing, and fast methods are available (Pace and

Barry, 1997a,b), while if matrices do need inverting, sparse matrix methods can be used (Rue and

Held, 2005). In addition, for Bayesian Markov chain Monte Carlo methods (MCMC; Gelfand and

Smith, 1990), CAR models are ready-made for conditional sampling because of their conditional

specification.

Spatial autoregressive models are often used in generalized linear models, which can be

viewed as hierarchical models, where the spatial CAR model is generally latent in the mean

function in a hierarchical modeling framework. Indeed, one of their most popular uses is for

“disease-mapping,” whose name goes back to Clayton and Kaldor (1987); see Lawson (2013a) for

book-length treatment. These models can be treated as hierarchical models (Cressie et al., 2009),

where the data are assumed to arise from a count distribution, such as Poisson, but then the log

of the mean parameter has a CAR/SAR model to allow for extra-Poisson variation that is

spatially patterned (e.g., Ver Hoef and Jansen, 2007). Note that this provides a full likelihood,
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unlike the quasi-likelihood often used for overdispersion for count data (Ver Hoef and Boveng,

2007). A similar hierarchical framework has been developed as a generalized linear model for

occupancy, which is a binary model, but then the logit (or probit) of the mean parameter has a

CAR/SAR model to allow for extra-binomial variation that is spatially patterned (Magoun et al.,

2007; Gardner et al., 2010; Johnson et al., 2013a; Broms et al., 2014; Poley et al., 2014). CAR

and SAR models can be embedded in more complicated hierarchical models as well (e.g., Ver Hoef

et al., 2014). Sometimes that may be too slow, and a fast general-purpose approach to fitting

these types of hierarchical models, which depends in part on the sparsity of the CAR covariance

matrix, is integrated nested Laplace approximation (INLA, Rue et al., 2009). INLA has been

used in generalized linear models for ecological data (e.g., Haas et al., 2011; Aarts et al., 2013),

spatial point patterns (Illian et al., 2013), and animal movement models (Johnson et al., 2013b),

among others. The growing popularity of INLA is due in part to its fast computing for

approximate Bayesian inference on the marginal distributions of latent variables.

EXAMPLE: HARBOR SEAL TRENDS

We used trends in harbor seals (Phoca vitulina) to illustrate the models and approaches for

inference described in previous sections. Harbor seals are abundant along the northwest coast of

the United States and Canada to Alaska (Pitcher and Calkins, 1979). Management of harbor

seals is important due to subsistence and reliance on these animals by Native Americans (Wolfe

et al., 2009). Consequently, interest in harbor seals led to many studies that have documented

abundance and trend in Oregon and Washington (Harvey et al., 1990; Huber et al., 2001; Jeffries

et al., 2003; Brown et al., 2005), British Columbia (Bigg, 1969; Olesiuk et al., 1990; Olesiuk,

1999), and Alaska (Pitcher, 1990; Frost et al., 1999; Small et al., 2003; Boveng et al., 2003;

Ver Hoef and Frost, 2003; Mathews and Pendleton, 2006).
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The study area is shown in Fig. 2 and contains 463 polygons used as survey sample units

along the mainland, and around islands, in Southeast Alaska. Based on genetic sampling, this

area has been divided into 5 different “stocks” (or genetic populations). Over a 14-year period, at

various intervals per polygon, seals were counted from aircraft. Using those counts, a trend for

each polygon was estimated using Poisson regression. Any polygons with less than two surveys

were eliminated, along with trends (linear on the log scale) that had estimated variances greater

than 0.1. This eliminated sites with small sample sizes. We treated the estimated trends, on the

log scale, as raw data, and ignored the estimated variances. These data are illustrative because we

expected the trends to show geographic patterns (more so than abundance which varied widely in

polygons) and stock structure connectivity, along with stock structure differences in mean values.

The data were also continuous in value, thus we modeled the trends with normal distributions to

keep the modeling simpler and the results more evident. A map of the estimated trend values

(that we henceforth treat as raw data) is given in Fig. 3, showing 463 polygons, of which 306 had

observed values and 157 were missing.

For neighborhood structures, we considered three levels of neighbors. The first-order

neighbors were based on any two polygons sharing one or more boundary point, and were

computed using the poly2nb function in the spdep package (Bivand and Piras, 2015) in R (R Core

Team, 2016). Some polygons were isolated, so they were manually connected to the nearest

polygon in space using straight-line (Euclidean) distance between polygon centroids. The

first-order neighbors are shown graphically in Fig. 4a with a close-up of part of the study area

given in Fig. 4b. Let N1 be a matrix of binary values, where a 1 indicates two sites are first-order

neighbors, and a 0 otherwise. Then second-order neighbors, which include neighbors of first-order

neighbors, were easily obtained in the matrix N2 = I(N2). Here, I(·) is an indicator function on

each element of the matrix, being 0 only when that element is 0, and 1 otherwise. A close-up of

27

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



some of the second-order neighbors is shown in Fig. 4c. The fourth-order neighbor matrix was

obtained as N4 = I(N2
2), and a close-up is shown in Fig. 4d.

We considered covariance constructions that elaborated the three different neighborhood

definitions. Let Ni; i = 1, 2, 4 be a neighborhood matrix as described in the previous paragraph.

Let S be a matrix of binary values that indicate whether two sites are in different stocks; that is,

if site i and j are in the same stock, then S[i, j] = 0, otherwise S[i, j] = 1. Finally, let the i, jth

entries in D be the Euclidean distance between the centroids of the ith and jth polygons. Then

the most elaborate CAR/SAR model we considered was

W = Ni ⊙ F(θ) = Ni ⊙ exp(−S/θ1)⊙ exp(−D/θ2). (18)

We use Eq. 18 in Eq. 5 and Eq. 6, where for SAR models B = ρW or B = ρW+, and for CAR

models C = ρW;M = I or C = ρW+;M = M+. Note that, when considering the spatial

regression model in Eq. 4, var(y) = Σ+ σ2
εI would also be possible; for example, for a first-order

CAR model, var(y) = σ2
Z(I− ρW)−1 + σ2

εI. However, when ρ = 0, then σ2
Z and σ2

ε are not

identifiable. In fact, as ρ goes from 1 to 0, it allows for diagonal elements to dominate in

(I− ρW)−1, and there seems little reason to add σ2
εI. We evaluated some models with the

additional component σ2
εI, but σ

2
ε was always estimated to be near 0, so few of those models are

presented. The exception is the IAR model, where conceptually ρ is fixed at one.

Our construction is unusual due to the exp(−S/θ1) component. We interpret θ1 as an

among-stock connectivity parameter. Connectivity is of great interest to ecologists, and by its

very definition it is about relationships between two nodes. Therefore, it is naturally modeled

through the covariance matrix, which is also concerned with this second-order model property.

Recall that, within stock, all entries in S will be zero, and hence those same entries in exp(−S/θ1)
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will be one. Now, if among stocks there is little correlation, then θ1 should be very small, causing

those entries in exp(−S/θ1) to be near zero. On the other hand, if θ1 is very large, then there will

be high correlation among stocks, and thus the stocks are highly connected with respect to the

behavior of the response variable, justifying our interpretation of the parameter. When used in

conjunction with the neighborhood matrix, the exp(−S/θ1) component helps determine if there is

additional correlation due to stock structure (low values of θ1, meaning low connectivity) or

whether the neighborhood definitions are enough (θ1 very large, meaning high connectivity).

Similarly, the exp(−D/θ2) component models the edge weights of neighboring areal units in the

autoregressive graph as an exponentially-decreasing function of distance between centroids. While

this component is similar in form to the exponential covariance function (Eq. 1) in geostatistical

models, the geostatistical model makes the covariance decay exponentially with distance, while in

this autoregressive model, the edge weights in W, which help define the precision matrix, decay

exponentially with distance. Similar models for edge weights have been employed in other studies

to allow for flexible autoregressive models (e.g., Cressie and Chan, 1989; Hanks et al., 2016).

We fit model Eq. 4 with a variety of fixed effects and covariance structures, and a list of

those models is given in Table 2. We fit models using maximum likelihood (except for the IAR

model, which does not have a likelihood, as discussed earlier), and details are given in Appendix

S1. The resulting maximized values of 2*log-likelihood are given in Fig. 5. Of course, some

models are generalizations of other models, with more parameters, and will necessarily have a

better fit. Methods such as Akaike Information Criteria (AIC, Akaike, 1973), Bayesian

Information Criteria (BIC, Schwarz, 1978), or others (see, e.g., Burnham and Anderson, 2002;

Hooten and Hobbs, 2015), can be used to select among these models. This is an example of

objective 1 listed in Table 1. For AIC, each additional parameter adds a “penalty” of 2 that is

subtracted from the maximized 2*log-likelihood. Fig. 5 shows the number of model parameters
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along the x-axis, and dashed lines at increments of two help evaluate models. For example,

XC4RD has 8 parameters, so, using AIC for model selection, it should be at least 2 better than a

model with 7 parameters. If one prefers a likelihood-ratio approach, then a model with one more

parameter should be better by a χ-squared value on 1 degree of freedom, or 3.841. We note that

there appears to be high variability among model fits, depending on the neighborhood structure

(Fig. 5). Several authors have decried the general lack of exploration of the effects of

neighborhood definition and choice in weights (Best et al., 2001; Earnest et al., 2007), and our

results support their contention that this deserves more attention. In particular, it is interesting

that row-standardized CAR models give substantially better fits than unstandardized, and CAR

is much better than SAR. Note, however, that these comparisons may not hold for other data

sets. Also, for row-standardized CAR models, fit worsens going from first-order to second-order

neighborhoods, but then improves when going to fourth-order. Using distance between centroids

had little effect until fourth-order neighborhoods were used. By an AIC criteria, model XC4RD,

with 8 parameters, would be the best model because it achieved an equal model fit as XC4RDS

and XC4RDU with 9 parameters, but was also more than 2 better than any of the models with 7

parameters. For model XC4RDS, the parameter θ1 was very large, making exp(−S/θ1) nearly

constant at 1, so this model component could be dropped without changing the likelihood. Also,

the addition of the uncorrelated random errors (model XC4RDU) had an estimated variance σ2
ε

near zero, and left the likelihood essentially unchanged.

As an example of objective 2 from Table 1, the estimation of fixed effects parameters, for 3

different models, are given in Table 3. The model is overparameterized, so the parameter µ is

essentially the estimate for stock 1. For example, for the XU model, exp(-0.079) = 0.92, giving an

estimated trend of about 8% average decrease per year for sites from stock 1. It is significantly

different from 0, which is equivalent to no trend, at α = 0.05. This inference is obtained by taking
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the estimate and dividing by the standard error, and then assuming that ratio is a standard

normal distribution under the null hypothesis that µ = 0. The other estimates are deviations from

µ, so stock 2 is estimated to have exp(-0.079 + 0.048) = 0.97, or a decrease of about 3% per year.

A P -value for stock 2 is obtained by assuming that the estimate divided by the standard error has

a standard normal distribution under the model of no difference in means, which is 0.111, and is

interpreted as the probability of obtaining the stock 2 value, or larger, if it had the same mean as

stock 1. It appears that stocks 3–5 have increasing trends, and that they are significantly different

from stock 1 at α = 0.05 when tested individually. In comparison, model XC4R, using maximum

likelihood estimates (MLE), and Bayesian estimates (MCMC), are given in the middle two sets of

columns of Table 3. The MLE estimates and standard errors for the best-fitting model, according

to AIC (model XC4RD), are shown in the last set of columns in Table 3, which are very similar to

the XC4R model. Further contrasts between trends in stocks are possible by using the

variance-covariance matrix for the estimated fixed effects for MLE estimates, or finding the

posterior distribution of the contrasts using MCMC sampling in a Bayesian approach.

Several aspects of Table 3 deserve comment. First, consistent with much literarure, notice

that the standard errors for the spatial error models are larger than for the independence model

XU, leading to greater uncertainty about the fixed effects estimates (Cliff and Ord, 1981; Anselin

and Griffith, 1988; Legendre, 1993; Lennon, 2000; Ver Hoef et al., 2001; Fortin and Payette,

2002). Also, the Bayesian posterior standard deviations are somewhat larger than those of

maximum likelihood. This is often observed in spatial models when using Bayesian methods,

where the uncertainty in estimating the covariance parameters is expressed in the standard errors

of the fixed effects, whereas for MLE the covariance parameters are fixed at their most likely

values (Handcock and Stein, 1993).

More recently, researchers have been examining the effect of autocorrelation on the shifting
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values of the correlation coefficients themselves. For example, in Table 3, when going from

classical multiple regression (Model XU), assuming independent residuals, to any of the spatial

models, the regression coefficients change. When errors are spatially autocorrelated, the classical

regression model is unbiased for estimating the coefficients (but not the standard errors of the

coefficients) (Cressie, 1993; Schabenberger and Gotway, 2005; Hawkins et al., 2007; Dormann,

2007), so interest centers on whether spatial models are more efficient (that is, unbiased like

classical regression, but generally closer to the true value). It has been argued that spatial models

generally move coefficients closer to their true values (e.g., Ver Hoef and Cressie, 1993; Kühn,

2007; Dormann, 2007), while more extensive analysis showed ambiguous results that depended on

the shift metric and the model (Bini et al., 2009).

Moreover, some have argued that classical regression coefficients may be preferred if the

covariates have strong spatial correlation of their own (a topic called spatial confounding, Clayton

et al., 1993; Reich et al., 2006). To explain, imagine that there are two highly autocorrelated

covariates, and they are collinear (cross-correlated) as well, but we only observe one of them. The

effect of the unobserved covariate will end up in the error term, causing autocorrelation there that

is strongly correlated to the observed covariate. This can cause unreliable estimation of the

regression coefficient for the observed covariate. The extent of this effect and how to correct for it

(if at all) is the subject of current interest and debate (e.g., Hodges and Reich, 2010; Paciorek,

2010; Hughes and Haran, 2013; Hanks et al., 2015). These issues, from proper confidence interval

coverage, to shifting regression coefficients, to spatial confounding, occur for all spatial (and

temporal) regression models, including CAR, SAR, and geostatistical models. These are actively

evolving research areas, and we add little except to make ecologists aware of them.

For objective 3 from Table 1, consider the curves in Fig. 6. We fit all combinations of CAR

and SAR models, with and without row-standardization, for the first-, second-, and fourth-order
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neighbors (12 possible models). All such models had 7 parameters, and a few of the models are

listed in Table 2. The likelihood profiles for ρ of the three best-fitting models are shown in Fig. 6.

The peak value for XC4R shows that this is the best model, and the MLE for ρ for this model is

0.604. This curve also provides a likelihood-based confidence interval, known as a profile

likelihood confidence interval (Box and Cox, 1964), which essentially inverts a likelihood-ratio

test. A 100(1− α)% confidence interval for a given parameter is the set of all values such that a

two-sided test of the null hypothesis that the parameter is the maximum likelihood value would

not be rejected at the α level of significance (i.e., the MLE value minus a χ-squared value with

one degree of freedom, which is 3.841 if α = 0.05). These are all values above the dashed line in

Fig. 6 for model XC4R, or, in other words, the endpoints of the confidence interval are provided

by the intersection of the dashed line with the curve, which has a lower bound of 0.113 and an

upper bound of 0.868. We also show the posterior distribution of ρ for the same model, XC4R,

using a Bayesian analysis. The posterior mean was 0.687, with a 95% credible interval ranging

from 0.315 to 0.933. The Bayesian estimate used improper uniform priors, so the joint posterior

distribution of all parameters will be proportional to the likelihood. The difference between the

MLE and the Bayesian estimates for the XC4R model is due to the fact that the MLE is the peak

of the likelihood jointly (with all other parameters at their peak), whereas the Bayesian posterior

is a marginal distribution (all other parameters have essentially been integrated over by the

MCMC algorithm). Nonetheless, the MLE and Bayesian inferences are quite similar.

Fig. 7 shows likelihood profiles for the other parameters in the covariance matrix. For the

best model, XC4RD, the solid line in Fig. 7a shows a peak for log(θ2) at 3.717, forming the

maximum likelihood estimate and relating to objective 4 from Table 1. Once again, we show a

dashed line at the maximized 2*log-likelihood (413.447) minus a χ-squared value at α = 0.05 on

one degree of freedom (3.841) to help visualize a confidence interval for θ2 (the profile likelihood
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confidence interval given by all values of the solid line that are above the dashed line). The

log-likelihood drops rapidly from the MLE (θ̂2 = 3.717) on the left, intersecting the dashed line

and forming a lower bound at 2.894, whereas the upper limit is unbounded. We return to the

notion of stock connectivity in Fig. 7b. The profile likelihood for θ1 for Model XC4RDS is given

by the solid line. The likelihood is very flat for larger values of θ1, and in fact it is continuously

increasing at an imperceptible rate. Thus, the MLE is the largest value in the parameter range,

which we clipped at log(θ1) = 10. A lower bound is at log(θ1) = 0.525, whereas the upper limit is

unbounded again.

Continuing with further inferences from the model, we consider prediction (objective 5)

from Table 1. Algorithms for both prediction and smoothing are given in Appendix S1. Kriging is

a spatial prediction method associated with geostatistics (Cressie, 1990). However, for any

covariance matrix, the prediction equations can be applied regardless of how that covariance

matrix was developed. We used universal kriging, that is, we included stock effects as covariates,

(Huijbregts and Matheron, 1971; Cressie, 1993, pg. 151) to predict all unsampled polygons (black

polygons in Fig. 3) using the XC4RD model. Note that kriging, as originally formulated, is an

exact interpolator (Cressie, 1993, pg. 129) that “honors the data” (Schabenberger and Gotway,

2005, p. 252) by having predictions take on observed values at observed sites. In Fig. 8a we show

the raw observations along with the predictions, making a complete map for all sites. Of course,

what distinguishes predictions using statistical models, as opposed to deterministic algorithms

(e.g., inverse distance weighting, Shepard, 1968) is that statistical predictions provide uncertainty

estimates for each prediction (Fig. 8B). When kriging is used as an exact interpolator, the values

are known at observed sites, so the prediction variances are zero at observed sites. Hence, we only

show the prediction standard errors for polygons with missing data.

We also use the more traditional smoother for CAR and SAR models, such as those used in
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(Clayton and Kaldor, 1987), forming objective 6 from Table 1. For model XC4RD, without any

independent component, this is essentially equivalent to leave-one-out-cross-validation. That is,

the conditional expectation, which is obtained directly from Eq. 11 (after adjusting for estimated

covariate effects) is used rather than the observed value at each location. When the covariance

matrix is known, for normally distributed data, ordinary kriging is also the conditional

expectation (Cressie, 1993, p. 108, 174). Hence, the predicted and smoothed values, using the

conditional expectation, are given in Fig. 8c; note then, that the predictions are equivalent to

Fig. 8a at the unsampled locations. Two extremes in smoothing approaches are 1) kriging as an

exact predictor, that is, it leaves the data unchanged (Figs. 8a), and 2) removing observed data to

replace them with conditional expectations based on neighbors (Fig. 8c). In fact, both are quite

unusual for a smoothing objective. Generally, a model is adopted with a spatial component, and a

noisy measurement error or independent component. Smoothing then involves finding a

compromise between the spatial component and the raw, observed data. As an example for these

data, consider the XI4RU model, which has an IAR component plus an uncorrelated error

component. The IAR model has very high autocorrelation (ρ = 1), but here we allowed it to be a

mixture with uncorrelated error, and the relative values of σ2
Z and σ2

ε will determine how much

autocorrelation is estimated for the data. Under this model, predictions for observed data can fall

between the very smooth IAR predictions and the very rough observed data. When such a model

is formulated hierarchically (Eq. 17), often in a Bayesian context, predictions exhibit a property

called shrinkage (Fay and Herriot, 1979), where predictions of observed values are some

compromise between an ultra-smooth fit from a pure IAR model, and the roughness of the raw

data (Fig. 8d). The amount of shrinkage depends on the relative values of σ2
Z and σ2

ε . In fact, this

is usually the case when CAR and SAR models are used in a generalized linear model setting

because the conditional independence assumption (e.g., of a Poisson distribution) is analogous to
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the σ2
εI component. Note that a Bayesian perspective is not a requirement, a similar objective is

obtained using filtered kriging (Waller and Gotway, 2004, pg. 306) when there are both spatial

and uncorrelated variance components.

Finally, to complete the example, we return to the idea of nonstationarity in variances and

covariances. Stationarity is the notion that statistical properties remain constant (stationary) as

we move through space. Stationarity means that correlation between neighbors on the edge of the

study area are the same as those in the middle, and that variances are constant throughout.

Notice that, as claimed earlier, row-standardization causes variance to decrease with the numbers

of neighbors (which are generally greater in the interior of a study area in contrast to the

perimeter) for model XC4R (Fig. 9a), but it is not a simple function of neighbors alone, as it

depends in complicated ways on the whole graphical (or network) structure. In contrast, variance

generally increases with the number of neighbors without row-standardization (model XC4) of the

neighborhood matrix (Fig. 9a). Correlation also decreases with neighbor order, although not as

dramatically as one might expect (Fig. 9b), and not at all (on average) between first-order to

second-order when the neighborhood matrix is not row-standardized. Box plots summarize all

possible correlations as a function of distance between centroids (binned into classes, Fig. 9c,d),

which show that while correlation generally decreases with distance between centroids, there is a

great deal of variation. Also recall that the MLE for ρ, which is a parameter in the precision

matrix, for model XC4R was 0.604 (Fig. 6), but for the covariance matrix, correlations are much

lower (Fig. 9b-d). Because weights are developed for partial correlations, or for the inverse of the

covariance matrix, when we examine the covariance matrix itself, the diagonal elements are

non-constant, in contrast to typical geostatistical models. It is important to realize that there is

no direct calculation between the estimated ρ value in the CAR or SAR model and the

correlations in the covariance matrix; only that higher ρ generally means higher correlations
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throughout the covariance matrix. One can always invert the fitted CAR or SAR model to obtain

the full covariance matrix, and this can then be inspected and summarized if needed (e.g., Fig. 9),

thus improving model diagnostics and our understanding of the fitted model.

DISCUSSION AND CONCLUSIONS

Autoregressive models are an important class of spatial models that have rarely been explained in

practical terms. We provide the following summary of CAR and SAR models.

1. Intuition on CAR and SAR models can be obtained by considering the relationship between

autoregressive weights and partial correlations.

2. Row standardization is generally a good idea after choosing initial neighborhoods and

weights. This will result in CAR models that are generally more local for a given set of

neighbors because, for that same set of neighbors, the SAR model squares the weights

matrix, creating neighbors of neighbors in the precision matrix.

3. The IAR model is a special case of the CAR model that uses row standardization and fixes

the autocorrelation parameter at one, which leads to an improper covariance matrix;

however, much like a similar AR1 model, or Brownian motion, these are still useful models.

In addition, we presented six objectives, some of which are common, and others less so, in

which spatial autoregressive models could be used. We fit a variety of CAR/SAR models using

MLE and MCMC methods to an example data set to illustrate all six objectives outlined in the

Introduction. In what follows, we provide further discussion on 5 take-home messages: 1)

thoughts on choosing between CAR and IAR models, 2) modeling ecological effects in the

covariance matrix, 3) the appeal of spatial smoothing, 4) how to handle isolated neighbors, and 5)

software considerations.
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The choice of IAR versus CAR is confusing, and while both are often described in the

literature together, there is little guidance on choosing between them. One advantage of the IAR

is that it has one less parameter to estimate. It was proposed by Besag and Kooperberg (1995) in

part based on the following: they noticed that for a certain CAR model, ρ in Eq. 6 needed to be

0.999972 to have a marginal correlation near 0.75 (indeed, compare the estimate of ρ̂ = 0.604 in

our example yielding the correlations seen in Fig. 9). In many practical applications, ρ was often

estimated to be very near 1, so Besag and Kooperberg (1995) suggested the IAR model as a

flexible spatial surface that has one less parameter to estimate. On the other hand, critics noticed

that it may force spatial smoothness where none exists (e.g., Leroux et al., 2000). Our point of

view is best explored through the hierarchical model Eq. 17. Consider an example of count data,

where the data model, y ∼ [y|g(µ)], conditional on the mean g(µ), is composed of independent

Poisson distributions. Hence, there are no extra variance parameters ν, but rather the

independent, nonstationary variance component is already determined because it is equal to the

mean. In this case, we recommend the CAR model to allow flexibility in modeling the diagonal of

the covariance matrix (the CAR model can allow for smaller ρ values, which essentially allows for

further uncorrelated error). On the other hand, if [y|g(µ),ν] has a free variance parameter in ν

(e.g., the product of independent normal or negative binomial distributions), then we recommend

the IAR model to decrease confounding between the diagonal of Σ, essentially controlled by ρ,

and the free variance parameter in ν.

The results for Figs. 6 and 7 have confidence intervals that are quite wide. In general,

uncertainty is much higher when trying to estimate covariance parameters than regression (fixed

effect) parameters. Nevertheless, the covariance models that we constructed demonstrate that it

is possible to examine the effect of covariates in the covariance structure (see also Hanks and

Hooten, 2013). In other words, it is possible to make inference on connectivity parameters in the
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covariance matrix, but, they may be difficult to estimate with much precision if the data are

measured only on the nodes. In our harbor seal example, when stock effects were put into the

mean structure, there was abundant evidence of different effects, but when that effect was put

into the covariance matrix, the precision was quite low. It is important to put connectivity effects

into the covariance matrix (in many cases, that will be the only place that makes sense), but

realize that they may be difficult to estimate well without large data sets.

From an ecological viewpoint, why do spatial smoothing? Geostatistics had a tradition

where modelers were often adamant that no smoothing occur (“honoring the data,”

Schabenberger and Gotway, 2005, p. 224). That tradition is often unknowingly continued with

uncritical use of kriging formulas for prediction. For example, if we assume that the observed

values, without error, are part of the process of interest, then notice from Fig. 3 that the largest

value is 0.835 from the legend on the right. Recalling that these are trends, on the log scale, the

observed value from the data was exp(0.835) = 2.3, or more than doubling each year. That is

clearly not a sustainable growth rate and is likely due to small sample sizes and random variation.

That same value from Fig. 8c is exp(0.039) = 1.04, or about 4% growth per year, which is a much

more reasonable estimate of growth. The largest smoothed value in Fig. 8c, back on the

exponential scale, was 1.083, or about 8% growth per year, and the largest value in Fig. 8d, back

on the exponential scale, was 1.146, or about 15% growth per year. These values are similar to

published estimates of harbor seal growth rates in natural populations (e.g., Hastings et al., 2012).

Fig. 8c,d also clarifies the regional trends, which are difficult to see among the noise in Fig. 3 or by

simply filling in the missing sites with predictions (Fig. 8a). For these reasons, smoothing is very

popular in disease-mapping applications, and it should be equally attractive for a wide variety of

ecological applications. In particular, the XI4RU model (Fig. 8d) is appealing because it uses the

data to determine the amount of smoothing. However, we also note that when used in hierarchical
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models where, for the data model, the variance is fixed in relation to the mean (e.g., binomial,

Bernoulli, and Poisson), the amount of smoothing will be dictated by the assumed variance of the

data model. In such cases, we reiterate the discussion on choosing between CAR and IAR.

A rarely discussed consideration is the case of isolated nodes (sites with no neighbors) when

constructing the neighborhood matrix. Having a row of zeros in B in Eq. 5, or in C in Eq. 6, will

cause problems. It is even easier to see that we cannot divide by zero in Eq. 13, or during

row-standardization. Instead, we suggest that the covariance matrix be constructed as









σ2
I I 0

0 Σ









,

where we show the data ordered such that all isolated sites are first, and their corresponding

covariance matrix is σ2
I I. The matrix Σ is the CAR or SAR covariance matrix for the sites

connected by neighbors. Note that one of the main issues here is the separation of the variance

parameters, σ2
I and σ2

Z in Eq. 5 or Eq. 6. As seen in Eq. 13, the autoregressive variance is often

scaled by the number of neighbors, and because the isolated sites have no neighbors, it is prudent

to give them their own variance parameter.

Our final take-home message concerns questions that a user should ask when fitting

autoregressive models with existing software packages. Does the software check the weights to

ensure the covariance matrix will be proper? It may be computationally expensive to check it

internally, which lessens the appeal of the autoregressive models, and the software may trust the

user to give it a valid weights matrix. Does the software use row-standardization internally? How

does the software handle isolated sites? These are special issues that only pertain to CAR and

SAR models, so we suggest investigation of these issues so that the software output can be better

understood.
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In closing, we note that “networks,” and network models, are seeing increasing use

throughout science, including ecology (Borrett et al., 2014). Looking again at Fig. 4, if we remove

the polygon boundaries, these are network models. Spatial information, in the way of

neighborhoods, was used to create the networks. Thus, more general concepts for CAR and SAR

models are the graphical models (Lauritzen, 1996; Whittaker, 2009). A better understanding of

these models will lead to their application as network models when data are collected on the

nodes of the network, and they can be extended beyond spatial data. This provides a rich area for

further model development and research that can include, modify, and enhance the autoregressive

models.
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TABLES

Table 1: Common objectives when using spatial autoregressive models. Notation for the model
components comes from Eq. 17.

Objective Description Model Com-
ponent

1. Model Compari-
son & Selection

CAR and SAR models are often part of a spatial (generalized)
linear model. One goal, prior to further inference, might be to
compare models, and then choose one. The choice of the form of
a CAR or SAR model may be important in this comparison and
selection.

L(·|y)

2. Regression The goal is to estimate the spatial regression coefficients, which
quantify how an explanatory variable “affects” the response vari-
able.

β

3. Autocorrelation The goal is to estimate the “strength” of autocorrelation, especially
if it represents an ecological idea such as spatial connectivity, which
quantifies how similarly sites change in the residual errors, after
accounting for regression effects.

ρ

4. Connectivity
Structure

The goal is to estimate covariate effects on connectivity (neighbor-
hood) structure. Although rarely used, covariates can be included
in the precision matrix to see how they affect connectivity structure
(causing more or less correlation).

θ

5. Prediction This is the classical goal of geostatistics, and is rarely used in CAR
and SAR models. However, if sites have missing data, prediction
is possible.

yu and/or µu

6. Smoothing The goal is to create values at spatial sites that smooth over ob-
served data by using values from nearby locations to provide better
estimates.

g(µ)
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Table 2: A variety of candidate models used to explore spatial autoregressive models for the example
data set. For fixed effects, the 1 indicates an overall mean in the model, and Xstock includes an
additional categorical effect for each stock. A [·]+ around a matrix indicates row-standardization,
and for CAR models, [M]+ is the appropriate diagonal matrix for such row standardization. The
matrices themselves are described in the text. For model codes, m indicates an overall mean only,
whereas X indicates the additional stock effect in the fixed effects. C indicates a CAR model, S
a SAR model, and I an IAR model. A 1 indicates a first-order neighborhood, 2 a second-order
neighborhood, and 4 a fourth-order neighborhood. R indicates row-standardization. D indicates
inclusion of Euclidean distance within neighborhoods, S a cross stock connectivity matrix. U at
the end indicates inclusion of an additive random effect of uncorrelated variables.

Model Fixed Covariance No.
Code Effects Model Parms

mU 1 σ2
εI 2

mC1R 1 σ2
Z(I− ρ[W1]+)

−1[M]+ 3
XU Xstock σ2

εI 6
XC1R Xstock σ2

Z(I− ρ[W1]+)
−1[M]+ 7

XC1 Xstock σ2
Z(I− ρW1)

−1 7
XS1R Xstock σ2

Z [(I− ρ[W1]+)(I− ρ[W1]+)]
−1 7

XS1 Xstock σ2
Z [(I− ρW1)(I− ρW1)]

−1 7
XC2R Xstock σ2

Z(I− ρ[W2]+)
−1[M]+ 7

XC4R Xstock σ2
Z(I− ρ[W4]+)

−1[M]+ 7
XC4 Xstock σ2

Z(I− ρW4)
−1 7

XI4RU Xstock σ2
Z(I− [W4]+)

−1[M]+ + σ2
εI (improper) 7

XC4RD Xstock σ2
Z(I− ρ[W4 ⊙ exp(−D/θ2)]+)

−1[M]+ 8
XC4RDS Xstock σ2

Z(I− ρ[W4 ⊙ exp(−D/θ2)⊙ exp(−S/θ1)]+)
−1[M]+ 9

XC4RDU Xstock σ2
Z(I− ρ[W4 ⊙ exp(−D/θ2)]+)

−1[M]+ + σ2
εI 9

Table 3: Estimated fixed effects for several models listed in Table 2. Both the estimate (Est.) and
estimated standard error (Std.Err.) are given for each model. All models use maximum likelihood
estimates (MLE), except for XC4R model, we distinguish the MLE estimate with -MLE, and a
Bayesian estimate using Markov chain Monte Carlo with -MCMC.

XU XC4R-MLE XC4R-MCMC XC4RD
Parameter Est. Std.Err Est. Std.Err Est. Std.Err. Est. Std.Err

µ -0.079 0.0225 -0.080 0.0288 -0.082 0.0330 -0.077 0.0290
βstock 2 0.048 0.0298 0.063 0.0379 0.063 0.0429 0.058 0.0386
βstock 3 0.093 0.0281 0.095 0.0355 0.097 0.0386 0.092 0.0356
βstock 4 0.132 0.0279 0.135 0.0346 0.138 0.0406 0.132 0.0346
βstock 5 0.084 0.0259 0.093 0.0327 0.096 0.0378 0.089 0.0330
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FIGURE CAPTIONS

• FIGURE 1. Spatial arrangement of sites in a simple 3 × 3 grid, where the numbers label

each site.

• FIGURE 2. Study area in Southeast Alaska, outlined in red in the lower left figure. Survey

polygons were established around the coast of the mainland and all islands, which were

surveyed for harbor seals. The study area comprises 5 stocks, each with their own color, and

are numbered for further reference.

• FIGURE 3. Map of the estimated trends (used as our raw data), where polygons are

colored by their trend values. The light grey polygons have missing data. Because some

polygons were small and it was difficult to see colors in them, all polygons were also

overwritten by a circle of the same color. The trend values were categorized by colors, with

increasing trends in yellows and greens, and decreasing trends in blues and violets, with the

cutoff values given by the color ramp.

• FIGURE 4. First, second, and fourth-order neighbor definitions for the survey polygons. (a)

First-order neighbors for all polygons. The grey rectangle is the area for a closer view in the

following subfigures: (b) first-order neighbors; (c) second-order neighbors; and (d)

fourth-order neighbors.

• FIGURE 5. Two times the log-likehood for the optimized (maximized) fit for the models

given in Table 2. Model mU had a much lower value (350.2) and is not shown. Starting

with model XU, the dashed grey lines show increments of 2, which helps evaluate the

relative importance of models by either an AIC or a likelihood-ratio test criteria.

• FIGURE 6. The different lines show 2∗log-likelihood profiles of ρ for three different models,
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listed in the legend. If the model is followed by -MLE, then the maximum of the profile

provides the maximum likelihood estimate, and the 2∗log-likelihood is given by the left

y-axis, while if it is followed by MCMC, then it is the posterior distribution from a Bayesian

model with a uniform prior on ρ, and the density is given by the right y-axis. The

horizontal dotted line is the maximum value for XC4R minus 3.841, the 0.05 α-level value of

a χ-squared distribution on one degree of freedom.

• FIGURE 7. (a) The solid line is the 2*Log-likelihood profile of θ2 for model XC4RD. (b)

The solid line is the 2*Log-likelihood profile of θ1 for model XC4RDS. For each figure, the

horizontal dashed line is the maximum value for the model minus 3.841, the 0.05 α-level

value of a χ-squared distribution on one degree of freedom.

• FIGURE 8. Predictions and smoothing for the harbor-seal stock-trend data. (a)

Predictions, using universal kriging from the XC4R model, at unsampled locations have

been added to the raw observed data from sampled locations. (b) Prediction standard errors

for unsampled locations using universal kriging from XC4R. (c) Smoothing over all locations

using conditional expectation based on the XC4R model. (d) Smoothing over all locations

by using posterior predictions (mean of posterior distributions) using the XI4RU model in a

Bayesian hierarchical model.

• FIGURE 9. Nonstationarity illustrated for XC4 model, and the same model using

row-standardization, XC4R. (a) Marginal variances of the multivariate covariance matrix

(diagonal elements of Σ) as a function of the numbers of neighbors, where circles indicate

XC4R and squares indicate XC4. Each symbol is partially transparent. (b) All pairwise

correlations as a function of the neighborhood order between sites. On the left of each

neighbor order is XC4R, and on the right is XC4. The larger circle is the average value. (c)
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and (d) Boxplots of pairwise correlation as a function of distance between polygon

centroids, binned into classes, for models XC4R and XC4, respectively.
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